

*Correspondencia:

<u>evelyna1217@hotmail.com</u> Teléfono [593] 099 8023 066

Conflicto de intereses: Los autores declaran no tener conflictos de intereses.

Fondos: Ver la página 21

Recibido: 10 Diciembre 2019 Aceptado: 21 Marzo 2020 Publicado: 30 Abril 2020

Membrete bibliográfico:

Valencia E. Tratamiento del Cáncer de Mama Metastásico, Receptor Hormonal Positivo, Her 2 Negativo: Enfoque actual a Dianas Terapéuticas. Rev. Oncol. Ecu 2019;30(1):13-23.

ISSN: 2661-6653

DOI: https://doi.org/10.33821/467

Copyright Valencia E. Este artículo es distribuido bajo los términos de Creative Commons Attribution License, el cual permite el uso y redistribución citando la fuente y al autor original.

Tratamiento del Cáncer de Mama Metastásico, Receptor Hormonal Positivo, Her 2 Negativo: Enfoque actual a Dianas Terapéuticas.

Treatment of Metastatic Breast Cancer, Hormone Receptor Positive, Her 2 Negative: Current Approach to Therapeutic Targets.

Evelyn Valencia Espinoza1*10

1. Postgrado de Oncohematología, Universidad Estatal de Guayaguil.

Resumen

En el cáncer de mama luminal, la terapia hormonal está indicada en adyuvancia y neoadyuvancia. El estadio metastásico incluye un grupo heterogéneo de tumores que varían de acuerdo con el sitio de metástasis, tiempo de aparición, condición general de las pacientes, entre otras características intrínsecas del tumor. Esto establece tiempos de sobrevida con rangos variables de meses a muchos años. Los estrógenos actúan en receptores de membrana citoplasmática y nuclear: en las células neoplásicas estimulan la transcripción del ARN, con persistencia de la proliferación. El bloqueo de la acción hormonal en el cáncer avanzado encuentra mecanismos de resistencia con el uso de vías de señalización paralelas, este conocimiento ha permitido el desarrollo de inhibidores de CDK 4/6, mTOR y PIK3-CA, que se recomiendan en enfermedad metastásica, con prolongación significativa de la supervivencia global. En crisis visceral aún se mantiene el uso de quimioterapia sistémica secuencial o combinada.

Palabras Claves: Neoplasias de la Mama, Metástasis de la Neoplasia, Receptor ErbB-2, inhibidores CDK 4/6.

DOI: 10.33821/467

Abstract

For a patient with estrogen receptor positive breast cancer, the adjuvant and neoadjuvant endocrine therapy has an absolute benefit. The metastatic stage includes a diverse group of tumors that vary according to the site of metastasis, time of appear, general condition of the patients, and other intrinsic characteristics of the tumor. survival in cancer varies according these features, from a few months to many years. Estrogen hormones stimulate nuclear and cytoplasmic receptors. In neoplastic cells, estrogen regulate RNA transcription, with persistence of proliferation. The blocking of hormonal action in metastatic cancer, has resistance mechanisms with the use of parallel signaling pathways, this knowledge has allowed the development of inhibitors of CDK 4/6, mTOR and PIK3-CA, which are

recommended in metastatic disease. with significant prolongation of overall survival. In visceral crisis, the use of sequential or combined systemic chemotherapy is still maintained..

Keywords: Breast Neoplasms; Neoplasm Metastasis; Receptor, Erb-2; CDK 4/6 inhibitors.

DOI: 10.33821/467

Introducción

El fenotipo histológico del cáncer de mama representa una herramienta crucial para el manejo terapéutico en todos los estadios tumorales, tanto en la neoadyuvancia como en la adyuvancia. Desde hace varias décadas, el tratamiento del fenotipo luminal se ha visto favorecido por moléculas farmacológicas, que, en diferentes sitios, bloquean el accionar de hormonas estrogénicas, cambiando el pronóstico y la sobrevida de los pacientes.

El estadio IV, engloba un conjunto de enfermedades heterogéneas, que tienen una sobrevida media de 3 años, con rangos entre pocos meses a varios años. Tal sobrevida ha mejorado en las últimas décadas [1] y está determinada por factores como: sitio anatómico de recaída, tamaño inicial del tumor [2], administración de quimioterapia previa, manipulación hormonal, estado general del paciente, presencia de comorbilidades, entre otros, constituyendo el manejo un desafío para el oncólogo clínico. El cáncer metastásico en general es una progresión de estadios previos. Sin embargo, un 10 % de casos representa diagnóstico de novo.

El esquema terapéutico para el cáncer de mama metastásico Receptor hormonal positivo (RH+), Her2 negativo, está definido por la presencia o ausencia de "crisis visceral", que es la situación clínica o laboratorial que demuestra una falla orgánica con alto riesgo de mortalidad. Entre las formas más comunes se encuentran linfangitis carcinomatosa, encefalopatía hepática e infiltración a médula ósea. Todas estas complicaciones ameritan el uso de quimioterapia sistémica secuencial o combinada. La ausencia de crisis visceral con afectación orgánica permite el uso de estrategias terapéuticas menos tóxicas, que tienen como base el bloqueo hormonal en diferentes sitios a nivel extra e intracelular, con mejoría de la sobrevida global en primera línea de manejo.

El objetivo de la presente revisión es identificar las mejores opciones de tratamiento. Para ello se presentan los mecanismos de acción de los diferentes fármacos dirigidos a moléculas específicas y el análisis de los ensayos clínicos que demuestran cambios en las tasas de respuesta en el transcurso del tiempo.

Antes del tratamiento

Definición del estado metastásico.

La extensión del cáncer de mama está definida por el sistema de estadificación del American Joint Committee on Cancer (AJCC) en la octava edición de 2017 [3]. El estadio IV

representa la invasión a otros órganos, más allá de ganglios linfáticos. En varios reportes de casos se ha demostrado que, con mayor frecuencia, los sitios de afección incluyen: hueso, pulmón, hígado, partes blandas, SNC [4]. Sin embargo, cualquier tejido es propenso de invasión tumoral. Alrededor del 10% de los casos son diagnosticados en este estadio, el resto de enfermedad metastásica corresponde a la progresión de estadios tempranos tras el fracaso terapéutico.

La recurrencia de la enfermedad local o a distancia, tiene como indicación la realización de una nueva biopsia que defina las características histológicas fenotípicas ante la presentación de una enfermedad que ha tenido cambios biológico-moleculares con ganancia de mutaciones genéticas conductoras y pasajeras [5)] Es así que la discordancia del fenotipo es de alrededor del 13 % en el receptor estrogénico (RE), 30 % en el receptor progestágeno (RP) y 5 % en el Her2 [6]. Respecto a la toma de decisiones frente a la discordancia existe controversia, sin embargo, la recomendación de 2018 es la utilización de una terapia dirigida si los receptores hormonales (RH), son positivos en al menos una de las biopsias [7].

Objetivos en el tratamiento

Los pacientes con cáncer de mama metastásico tienen una supervivencia global (SG) promedio de 3 años. A diferencia de los estadios iniciales donde el objetivo de tratamiento es alcanzar una curación, con reducción máxima de probabilidad de recaídas, el enfoque en el estadio IV es conseguir una mejor calidad de vida, control de la carga tumoral, prolongación de la supervivencia y reducción de las complicaciones asociadas.

Un grupo de pacientes que salen de este diseño, son aquellos con la enfermedad denominada "oligometastásica" con baja carga tumoral y biología indolente, en quienes se ha logrado remisiones prolongadas. Aunque es difícil definir tales características, se están asociando diferentes estrategias quirúrgicas, sistémicas y radio-oncológicas para prolongar notablemente la sobrevida. Entre estas estrategias vale mencionar la radioterapia estereotáctica hipofraccionada, pues ha producido buenos resultados [8].

Factores pronósticos y predictivos

La supervivencia global (SG) y la supervivencia libre de progresión (SLP) en el cáncer de mama metastásico tienen gran variabilidad entre los diferentes casos y están influenciadas por diversos factores.

Un factor pronóstico se refiere a ciertas condiciones del tumor, paciente o entorno, que pueden modificar el curso de la enfermedad, valorada fuera del contexto de una terapia administrada, los principales factores son:

- Intervalo libre de recaída mayor a 2 años: es un factor favorable frente a una recaída más temprana, ha sido demostrado en varios estudios desde hace varias décadas [9].
- Sitio de metástasis: La infiltración a pared torácica, tejidos blandos y hueso están asociados a una SLP más larga, en comparación con infiltración a otros órganos. Los sitios de peor pronóstico incluyen: SNC, invasión pulmonar y hepática [10].

• Crisis visceral: Está definida como la infiltración orgánica que provoca un riesgo inminente de morbi-mortalidad, valorada a través de parámetros clínicos y de laboratorio. Son por ejemplo la meningitis carcinomatosa, metástasis hepática importante con elevación de transaminasas y bilirrubinas, linfangitis carcinomatosa pulmonar con insuficiencia respiratoria, invasión ósea con infiltración medular que cause citopenias. Están asociados a una SG corta, en la actualidad se recomienda para el tratamiento el uso de quimioterapia sistémica, aún con malos resultados en supervivencia.

Se realizó un estudio retrospectivo de cáncer metastásico luminal en crisis visceral, en el cual no se observó mejoría bajo el uso de quimioterapia frente a tratamiento paliativo con SG de 6.2 y 5.8 semanas respectivamente [11].

- Subtipo histológico: los fenotipos luminales han mostrado mejor SG frente a Her2 y Triple negativos (TN)
- Pérdida de peso y ECOG bajo: se asocian con acortamiento de SLP y SG.
- Células tumorales y ADN circulante: ninguno tiene un valor clínico definido, pero hay varios estudios en los cuales se ha demostrado que una detección elevada en sangre periférica se asocia a peor pronóstico [12].

Los factores predictivos permiten inferir en el desenlace del cáncer de mama metastásico, tras la aplicación de un tratamiento. Son, por ejemplo, la determinación del fenotipo en el sitio de metástasis (en la que puede haber positividad de un receptor antes no expresado, que permita el uso de una terapia dirigida) y la detección de mutaciones específicas como PIK3-CA que permite el uso de Alpelisib, con resultados significativos en la SLP.

Tratamiento del tumor de mama Receptor hormonal positivo metastásico y recurrente

Mientras que en los estadios iniciales la exéresis del tumor o mastectomía son considerados el tratamiento estándar, en el estadio metastásico el beneficio de la resección quirúrgica se considera una opción válida como terapia de soporte para disminuir síntomas o complicaciones de mamas ulceradas, sangrantes o con riesgo de daño orgánico por contigüidad. En trabajos retrospectivos con muestras pequeñas se ha demostrado un beneficio en la SG para metástasis única o múltiples de un solo órgano, lo cual no se ha corroborado en trabajos prospectivos. Sin embargo, en el análisis de subgrupos de varios ensayos hay beneficios significativos en la SG, las condiciones que favorecen a esta respuesta son tumores sin evidencia de metástasis adicional, buen ECOG, edad menor a 55 años e intervalo libre de enfermedad mayor a 2 años [13]. Con este antecedente, el tratamiento sistémico es la principal recomendación para el estadio metastásico, se hace una diferenciación en 2 grupos de pacientes, aquellos que cursan con o sin crisis visceral.

La crisis visceral, al involucrar un riesgo de morbi-mortalidad inminente, requiere el uso de terapias con tiempo de acción rápido. Por tanto, la indicación es quimioterapia sistémica, combinada o secuencial. Otro grupo de pacientes beneficiarios son aquellos con enfermedad rápidamente progresiva o aquellos con resistencia hormonal. La elección del esquema de quimioterapia depende de distintos factores que se mencionan a continuación y que resultan en el manejo individualizado de los pacientes:

- Carga tumoral elevada: se escoge quimioterapia combinada puesto que aquí, el beneficio de la acción farmacológica sobrepasa el riesgo de toxicidad.
- Tratamiento previo y toxicidades: se debe tener en cuenta la dosis total de antraciclinas administradas, además de la toxicidad cardiológica, hepática o hematológica previa.
- Estado general ECOG: Un buen estado general en pacientes oligometastásicas de novo puede permitir un manejo más agresivo con miras a remisión.
- Portadoras de BCRA 1 y 2: presentan mayor sensibilidad a agentes de platino.
- Preferencias del paciente: siempre debe ser tomado en cuenta luego de brindar una información detallada del estado de enfermedad. Algunos pacientes pueden optar por un manejo paliativo, además de decidir sobre la frecuencia o vía de administración de la quimioterapia.

Quimioterapia combinada.

No existen datos que demuestren, que la quimioterapia combinada mejore la SG, pero es una elección útil en ciertas condiciones en las que se requiera una reducción pronta de la carga tumoral.

En el cáncer de mama metastásico, los regímenes más usados están basados en antraciclinas y en taxanos. La comparación entre esquemas que contengan uno u otro no tienen diferencia en la tasa de respuesta, mientras que los estudios que incluyen a ambos agentes mostraron mejores datos en tasa de respuesta, sin diferencia en SG y SLP [14].

Quimioterapia de agente único:

Taxanos

Docetaxel y paclitaxel pueden ser usados con administración semanal o cada 3 semanas. Hay un metaanálisis de 2010 que comparó el beneficio de las 2 frecuencias de administración, respecto a paclitaxel semanal se analizaron 5 estudios con un total de 1471 pacientes, se encontró un beneficio en la SG frente a la aplicación cada 3 semanas. En el uso de docetaxel no hubo diferencias en SG o SLP, pero la administración semanal estuvo asociada a mayor toxicidad, por lo cual a diferencia del paclitaxel la recomendación es de aplicación cada 3 semanas [15].

Antraciclinas

Son útiles en pacientes que previamente no han sido expuestos a estos medicamentos con función cardiaca adecuada, una ventaja es que la hepatotoxicidad leve o moderada, no es un limitante en su uso con la modificación de la dosis.

Capecitabina

De administración oral, los principales efectos adversos son el síndrome mano – pie y síntomas gastrointestinales, se ha demostrado mejoría en SG, en pacientes pretratadas con antraciclinas y taxanos [16]. Tiene efectos positivos en metástasis óseas y también acción en metástasis cerebrales.

Tratamiento endócrino

Regulación hormonal del estrógeno extra e intracelular

Los estrógenos son hormonas esteroideas, producidas en los ovarios y en menor proporción en testículo, glándulas suprarrenales, piel y tejido graso. Controlan el desarrollo de caracteres sexuales femeninos, además de funciones como: formación de HDL, mineralización ósea, proliferación endoletial de vasos sanguíneos y otras.

La regulación hormonal se da a través del eje hipotálamo - hipófisis - gónadas, ciclo que empieza con la secreción de la hormona reguladora de gonadotropinas (GnRH) que a través de la liberación pulsátil lenta favorece la producción de la hormona folículo estimulante (FSH). En el ovario esta hormona regula la síntesis de hormonas estrogénicas. En los sitios periféricos la regulación se da por la enzima aromatasa, que permite la síntesis de estrógenos a partir de andrógenos.

Clásicamente se conoce que los diferentes tipos de estrógenos actúan a nivel de receptores de tipo alfa (mama, hipófisis, útero) y beta (ovario, hueso, endotelio) que se localizan en la membrana nuclear de la célula. Los RE son factores de transcripción, con péptidos de señal intranuclear, activadores de protooncogenes como del c-Myc, actúan de manera dependiente o independiente de ligando. La activación independiente se realiza a través de quinasas de vías cercanas de señalización [17]. En las últimas décadas se ha comprobado que los RE residen también en la membrana plasmática y en las mitocondrias, esta vía de señalización citoplasmática incluye a segundos mensajeros como IGF-1, factor de crecimiento epidérmico, p21, Raf, MAPK, AKT, entre otros [18].

El antagonismo en la acción de los estrógenos es parte de la terapia utilizada en el cáncer de mama luminal metastásico: el tamoxifeno es un modulador selectivo del RE, letrozol y anastrozol son inhibidores de la aromatasa (IA) no esteroidales, exemestano es IA esteroidal y fulvestrant es un antagonista competitivo del RE. Otro mecanismo de inhibición estrogénica es la supresión ovárica de forma química con los inhibidores de la GnRH (goserelina,) o quirúrgica (ooforectomía). Con el uso prolongado de estas terapias se desarrollan RE que actúan de forma independiente al ligando, a través de la activación de vías de señalización paralelas, entre las que se encuentran: PIK3CA-AKT-mTOR y las quinasas dependientes de ciclina (CDK) y ciclinas.

Tratamiento en el cáncer metastásico de novo y recidivas

Luego de la mitosis, la célula puede o no permanecer en estado quiescente conocido como G0, o iniciar las fases de crecimiento celular y duplicación del material génico en G1, S y G2 como preparación para una nueva división celular. Los cambios de fase en el ciclo celular están controlados por enzimas quinasas. Un punto de control clave está entre G1 y S, comandado por la quinasa dependiente de ciclina 4/6 (CDK 4/6) y su interacción con la ciclina D1, que fosforila al retinoblastoma (RB) - E2F, con la consiguiente disociación de ambas moléculas y la promoción de la transcripción por estímulo de la E2F liberada. Esta vía es utilizada por las células tumorales metastásicas resistentes a la terapia endócrina. Resulta interesante conocer que, en los estadios iniciales de los tumores, esta vía no tiene importancia y no se han encontrado mutaciones asociadas, mientras que en las recurrencias locales o a distancia existen mutaciones frecuentes a lo largo de esta vía de señalización. El mecanismo de control de esta vía está dado por inhibidores de quinasas dependientes de ciclinas entre los que destaca la proteína p16, que se une a CDK 4/6 para evitar la progresión del ciclo celular [19].

El conocimiento de estas vías ha permitido desarrollar dianas terapéuticas específicas, teniendo papel protagónico los inhibidores de CDK 4/6, que, junto a los IA, se establecieron como terapia de primera línea, mostrando cambios favorables en la SLP y SG.

Los inhibidores selectivos CDK 4/6, aprobados, son el palbociclib, ribociclib y abemaciclib. El primer ensayo en probar la eficacia y seguridad de estos medicamentos en pacientes con cáncer de mama luminal metastásico sin tratamiento previo fue PALOMA 1 de fase II para el palbociclib, en este estudio las pacientes postmenopáusicas fueron asignadas a recibir letrozol o letrozol más palbociclib y fueron divididas en 2 cohortes, la primera con amplificación de ciclina D1 o pérdida de p16 (INK4A o CDKN2A); y, la segunda, sin estas mutaciones. En ambas cohortes se vio un aumento en SLP de 10.2 a 20.2 meses, a favor de palbociclib más letrozol, lo cual determinó el beneficio de los inhibidores de CDK 4/6 en todos los cánceres de mama recurrentes o metastásicos luminales; de manera independiente a la presencia de mutaciones en la vía [20]. Los datos fueron confirmados en PALOMA 2 de fase III y se proporcionaron mayores pruebas de la eficacia y seguridad de este medicamento [21], que fue aprobado por la FDA en 2015 como terapia de primera línea para cáncer de mama metastásico RH+, Her2- [22].

La mejoría en SLP de ribociclib y abemaciclib asociada a IA fue demostrada en los estudios de fase III, MONALESSA 2 y MONARCH 3 respectivamente. Conforme se determinó el beneficio, eficacia y seguridad de estos fármacos, además de ser aprobados también por la FDA, se pudo añadir como terapia a otro grupo de pacientes que ya habían sido manipuladas hormonalmente y que presentan resistencia farmacológica temprana o tardía. Se han desarrollado estudios como PALOMA 3, MONALESSA 3 y MONARCH 2, en los cuales, el palbociclib, ribociclib y abemaciclib junto a fulvestrant también mostraron mejoría en la SLP vs fulvestrant solo.

Los mecanismos de resistencia a este tipo de terapia aún están en investigación. Se han planteado como hipótesis: la supresión del RB, nivel elevado de expresión en del gen CDK4 y CDK6, menor expresión del gen de CICLINA E, alteraciones en genes, como PIK3CA, ESR1, TP53, CDH1, FGFR, sin embargo, estas mutaciones han mostrado resistencia in vitro, aún sin confirmación estadística definitiva in vivo [23].

Tras la resistencia a la terapia mencionada se propone la utilización de everólimus (inhibidor de mTOR) más exemestano, que en el estudio BOLERO 2 indicó un aumento de SLP de 4 meses frente al exemestano más placebo [24].

Otra opción terapéutica en resistencia es la búsqueda de la mutación de PIK3CA, que está presente en aproximadamente el 40 % de los cánceres luminales y conducen a una hiperactivación corriente abajo, con pronóstico desfavorable y desarrollo de resistencias farmacológicas. Ante la presencia de esta mutación, el alpelisib (inhibidor de PIK3CA) ha demostrado beneficios en la SLP, el estudio SOLAR 1 comparó alpelisib más fulvestrant vs placebo, con una mediana de SLP de 11 vs. 5.7 meses, estadísticamente significativo [25].

Conclusiones

El cáncer de mama metastásico luminal tiene una SG variable, determinada por factores pronósticos y predictivos, que permiten ofrecer un tratamiento individualizado a las pacientes con mejoría no solo en calidad de vida sino también en SLP y SG.

La metástasis visceral determina el uso de terapia sistémica. Cuando existe crisis visceral se prefiere la administración de mono o poliquimioterapia. En algunos casos como en oligometástasis, puede ser útil también la cirugía o la radioterapia esterotáxica.

En ausencia de crisis visceral la terapia de primera línea, señalada en las guías internacionales, es el uso de inhibidores de CDK 4/6 (palbociclib, ribociclib, abemaciclib) más un IA. En tumores resistentes a estas líneas de tratamiento ya están aprobados los inhibidores de mTOR: everólimus y en la presencia de mutaciones en PIK3CA está aprobado el uso de alpelisib.

Nota del Editor

La Revista Oncología Ecu permanece neutral con respecto a los reclamos jurisdiccionales en mapas publicados y afiliaciones institucionales.

Agradecimientos

Reconocemos a las personas que ayudaron a la compilación bibliográfica de los artículos en la presente revisión, en especial al personal de la biblioteca del Instituto Oncológico Nacional "Dr. Juan Tanca Marengo", Solca-Guayaquil- Ecuador.

Información adicional

Abreviaturas

DOI: 10.33821/467

RE: receptor estrogénico RH: receptor Hormonal SG: Sobrevida Global

SLP: Sobrevida Libre de Progresión

Archivos Adicionales

Ninguno declarado por los autores.

Fondos

Los fondos de la investigación fueron propios de los autores del presente artículo.

Disponibilidad de datos y materiales

Existe la disponibilidad de los artículos consultados en la presente revisión.

Contribuciones de los autores

La autora realizó la concepción de la idea de revisión, recolección de artículos, escritura del artículo.

Aprobación de ética y consentimiento para participar

No aplica a un artículo de revisión.

Consentimiento para publicación

No aplica.

Referencias

- 1. Caswell-Jin JL, Plevritis SK, Tian L, Cadham CJ, Xu C, Stout NK, et al. Change in Survival in Metastatic Breast Cancer with Treatment Advances: Meta-Analysis and Systematic Review. JNCI Cancer Spectr. 2018 Nov;2(4):pky062.
- 2. Sopik V, Narod SA. The relationship between tumour size, nodal status and distant metastases: on the origins of breast cancer. Breast Cancer Res Treat. 2018;170(3):647–56.

- 3. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al., editors. Manual de estadificación del cáncer del AJCC, Texto original [Internet]. Springer International Publishing; 2017 [cited 2020 Aug 27]. Available from: https://www.springer.com/gp/book/9783319406176
- 4. Maffuz-Aziz A, Labastida-Almendaro S, Espejo-Fonseca A, Rodríguez-Cuevas S. Características clinicopatológicas del cáncer de mama en una población de mujeres en México. Cir Cir. 2017 May 1;85(3):201–7.
- 5. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, et al. Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell. 2017 Aug;32(2):169-184.e7.
- 6. Aurilio G, Disalvatore D, Pruneri G, Bagnardi V, Viale G, Curigliano G, et al. A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. Eur J Cancer. 2014 Jan 1;50(2):277–89.
- 7. Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F, et al. 4th ESO ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4)†. Ann Oncol. 2018 Aug 1;29(8):1634–57.
- 8. Milano MT, Katz AW, Zhang H, Huggins CF, Aujla KS, Okunieff P. Oligometastatic breast cancer treated with hypofractionated stereotactic radiotherapy: Some patients survive longer than a decade. Radiother Oncol. 2019 Feb 1;131:45–51.
- 9. Clark GM, Jr GWS, Osborne CK, McGuire WL. Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol [Internet]. 2016 Sep 22 [cited 2020 Aug 31]; Available from: https://ascopubs.org/doi/pdf/10.1200/JC0.1987.5.1.55
- 10. Swenerton KD, Legha SS, Smith T, Hortobagyi GN, Gehan EA, Yap H-Y, et al. Prognostic Factors in Metastatic Breast Cancer Treated with Combination Chemotherapy. Cancer Res. 1979 May 1;39(5):1552-62.
- 11. Sbitti Y, Slimani K, Debbagh A, Mokhlis A, Kadiri H, Laraqui A, et al. Visceral Crisis Means Short Survival Among Patients With Luminal A Metastatic Breast Cancer: A Retrospective Cohort Study. World J Oncol. 2017 Aug;8(4):105–9.
- 12. Ye Z, Wang C, Wan S, Mu Z, Zhang Z, Abu-Khalaf MM, et al. Association of clinical outcomes in metastatic breast cancer patients with circulating tumour cell and circulating cell-free DNA. Eur J Cancer. 2019 Jan 1;106:133–43.
- 13. Soran A, Ozmen V, Ozbas S, Karanlik H, Muslumanoglu M, Igci A, et al. Randomized Trial Comparing Resection of Primary Tumor with No Surgery in Stage IV Breast Cancer at Presentation: Protocol MF07-01. Ann Surg Oncol. 2018 Oct 1;25(11):3141-9.
- 14. Piccart-Gebhart MJ, Burzykowski T, Buyse M, Sledge G, Carmichael J, Lück H-J, et al. Taxanes Alone or in Combination With Anthracyclines As First-Line Therapy of Patients With Metastatic Breast Cancer. J Clin Oncol. 2008 Apr 20;26(12):1980–6.
- 15. Mauri D, Kamposioras K, Tsali L, Bristianou M, Valachis A, Karathanasi I, et al. Overall survival benefit for weekly vs. three-weekly taxanes regimens in advanced breast cancer: A meta-analysis. Cancer Treat Rev. 2010 Feb 1;36(1):69–74.
- 16. Fumoleau P, Largillier R, Clippe C, Dièras V, Orfeuvre H, Lesimple T, et al. Multicentre, phase II study evaluating capecitabine monotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer. Eur J Cancer Oxf Engl 1990. 2004 Mar;40(4):536–42.
- 17. Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology. 2019 Mar 1;160(3):605–25.
- 18. Bottino MC, Lanari C. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos. 2010;12.
- 19. Bilgin B, Sendur MAN, Dede DŞ, Akıncı MB, Yalçın B. A current and comprehensive review of cyclin-dependent kinase inhibitors for the treatment of metastatic breast cancer. Curr Med Res Opin. 2017 Sep 2:33(9):1559–69.
- 20. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-

positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015 Jan 1;16(1):25–35.

- 21. Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, et al. Palbociclib and Letrozole in Advanced Breast Cancer. N Engl J Med. 2016 Nov 17;375(20):1925–36.
- 22. Palbociclib DS, Ja B. Aprobación de palbociclib por la Food and Drug Administration (FDA). :2.
- 23. de Melo Gagliato D, C Buzaid A, Perez-Garcia JM, Llombart A, Cortes J. CDK4/6 Inhibitors in Hormone Receptor-Positive Metastatic Breast Cancer: Current Practice and Knowledge. Cancers. 2020 Sep;12(9):2480.
- 24. Baselga J, Campone M, Piccart M, Burris HAI, Rugo HS, Sahmoud T, et al. Everolimus in Postmenopausal Hormone-Receptor-Positive Advanced Breast Cancer [Internet]. http://dx.doi.org/10.1056/NEJMoa1109653. Massachusetts Medical Society; 2012 [cited 2020 Sep 23]. Available from: https://www.nejm.org/doi/10.1056/NEJMoa1109653
- 25. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med [Internet]. 2019 May 15 [cited 2020 Sep 23]; Available from: https://www.nejm.org/doi/10.1056/NEJMoa1813904
- 26. Beatson GT. On the Treatment of Inoperable Cases of Carcinoma of the Mamma: Suggestions for a New Method of Treatment, with Illustrative Cases. Trans Medico-Chir Soc Edinb. 1896;15:153–79.